Search results for "Baryon asymmetry"

showing 10 items of 51 documents

(Standard model) universe dominated by the right matter

2009

14 pages, 3 figures. References on late time enthropy release included, several points clarified. PACS numbers: 14.60.Pq, 98.80.Cq. ArXiv pre-print available at http://arxiv.org/abs/0806.4389

AstrofísicaPhysicsNuclear and High Energy PhysicsParticle physicsGrand-Unified-TheoryDark-MatterHigh Energy Physics::PhenomenologyElectroweak interactionDark matterBaryogenesisFísicaAstrophysics::Cosmology and Extragalactic AstrophysicsTime Entropy ProductionBaryogenesisBaryon asymmetryDecaying ParticlesConstraintsHigh Energy Physics::ExperimentGravitinoNeutrinoNeutrino MassNeutrino oscillationPhenomenology (particle physics)Inflationary UniversePhysical Review D
researchProduct

Cosmological lepton asymmetry with a nonzero mixing angle \theta13

2012

While the baryon asymmetry of the Universe is nowadays well measured by cosmological observations, the bounds on the lepton asymmetry in the form of neutrinos are still significantly weaker. We place limits on the relic neutrino asymmetries using some of the latest cosmological data, taking into account the effect of flavor oscillations. We present our results for two different values of the neutrino mixing angle \theta_{13}, and show that for large \theta_{13} the limits on the total neutrino asymmetry become more stringent, diluting even large initial flavor asymmetries. In particular, we find that the present bounds are still dominated by the limits coming from Big Bang Nucleosynthesis, …

Astrophysics and AstronomyNuclear and High Energy PhysicsParticle physicsmedia_common.quotation_subjectCosmic microwave backgroundCosmic background radiationAstrophysics::Cosmology and Extragalactic AstrophysicsEarly Universe7. Clean energy01 natural sciencesAsymmetryPartícules (Física nuclear)CosmologyBaryon asymmetryBig Bang nucleosynthesisPower Spectrum0103 physical sciences010306 general physicsTelescopemedia_commonPhysicsFlavor Oscillations010308 nuclear & particles physicsHigh Energy Physics::Phenomenology[PHYS.HPHE] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]ConstraintsParametersNeutrino DegeneracyHigh Energy Physics::ExperimentNeutrinoAstrophysics - Cosmology and Nongalactic AstrophysicsLepton
researchProduct

Electroweak baryogenesis from a dark sector

2017

Adding an extra singlet scalar $S$ to the Higgs sector can provide a barrier at tree level between a false vacuum with restored electroweak symmetry and the true one. This has been demonstrated to readily give a strong phase transition as required for electroweak baryogenesis. We show that with the addition of a fermionic dark matter particle $\chi$ coupling to $S$, a simple UV-complete model can realize successful electroweak baryogenesis. The dark matter gets a CP asymmetry that is transferred to the standard model through a $CP\ portal\ interaction$, which we take to be a coupling of $\chi$ to $\tau$ leptons and an inert Higgs doublet. The CP asymmetry induced in left-handed $\tau$ lepto…

Astrophysics and AstronomyParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)standard model of particle physicsPhysics beyond the Standard ModelSTANDARD MODELFOS: Physical sciences01 natural sciences7. Clean energy114 Physical sciencesdark matterHiggs sectorStandard Modelpimeä aineHigh Energy Physics - Phenomenology (hep-ph)Baryon asymmetry0103 physical sciencesSINGLET010306 general physicsParticle Physics - PhenomenologyPhysicsta114010308 nuclear & particles physicsElectroweak interactionHigh Energy Physics::Phenomenologyhiukkasfysiikan standardimalliRADIATIVE NEUTRINO MASShep-phSphaleronBaryogenesisHigh Energy Physics - Phenomenologyastro-ph.COHiggs bosonPHASE-TRANSITIONHigh Energy Physics::ExperimentMATTERAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

ɛ-type contribution to baryon asymmetry from colored Higgs triplets

1991

In scenarios where the cosmological baryon asymmetry is generated in the decay of heavy colored Higgs triplets at the one-loop level (at least two triplets are needed), it is shown that in addition to the conventional triangle loop ({epsilon}{prime}-type effect), a new kind of diagram must be considered. This new type of diagram has its origin in the mixing of the two Higgs fields ({epsilon}-type effect). The mixing of the two Higgs fields violates {ital CP} provided they have at least two common decay channels. For small mixing angles, the new contribution can be bigger than the conventional one.

BaryonPhysicsParticle physicsBaryon asymmetryHigh Energy Physics::PhenomenologyHiggs bosonGrand Unified TheoryHigh Energy Physics::ExperimentElementary particleBaryon numberType (model theory)Mixing (physics)Physical Review D
researchProduct

Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider

2020

Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these longlived particles (LLPs) can decay far from the interaction vertex of the primary proton–proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP…

HIGH-ENERGYbeyond the Standard Modellarge hadron colliderPhysics::Instrumentation and DetectorsPROTON-PROTON COLLISIONSPhysics beyond the Standard Modelbeyond the standard model01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)high-luminosity lhcHigh Energy Physics - Phenomenology (hep-ph)MAGNETIC MONOPOLESlong-lived [particle]high-energy collider experimentsdecay: vertexscattering [p p][PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]long-lived particlesQCproposed [detector]Physicslifetimedark gauge forcesLarge Hadron ColliderCMSROOT-S=13 TEVroot-s=13 tevPhysicsnew physics: search forscale: electroweak interactionhep-phATLASelectroweak interaction [scale]vertex [decay]upgrade [detector]High Energy Physics - Experiment; High Energy Physics - Experiment; High Energy Physics - Phenomenologydetector: upgradeSettore FIS/02 - Fisica Teorica Modelli e Metodi Matematiciprimary [vertex]ddc:High Energy Physics - PhenomenologyCERN LHC CollLarge Hadron Colliderbaryon asymmetryvertex: primaryLHCcolliding beams [p p]exclusion limitspp collisionsParticle Physics - ExperimentsignatureNuclear and High Energy PhysicsParticle physicsp p: scatteringCERN LabPAIR PRODUCTIONcollider phenomenologyreviewFOS: Physical sciencesDARK GAUGE FORCES530search for [new physics]BARYON ASYMMETRY0103 physical sciencesddc:530010306 general physicsnumerical calculationsParticle Physics - PhenomenologyEXCLUSION LIMITSmagnetic monopolesPP COLLISIONS010308 nuclear & particles physicshep-exbackgroundbibliographyshowersMAJORANA NEUTRINOSCollisiontracksLHC-Bdetector: proposedhigh-luminosity LHCpair productionMATHUSLAPhysics and Astronomy[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]proton-proton collisionshigh-energymajorana neutrinosparticle: long-livedp p: colliding beamsPhysics BSMexperimental results
researchProduct

Unifying leptogenesis, dark matter and high-energy neutrinos with right-handed neutrino mixing via Higgs portal

2016

We revisit a model in which neutrino masses and mixing are described by a two right-handed (RH) neutrino seesaw scenario, implying a strictly hierarchical light neutrino spectrum. A third decoupled RH neutrino, $N_{\rm DM}$ with mass $M_{\rm DM}$, plays the role of cold dark matter (DM) and is produced by the mixing with a source RH neutrino, $N_{\rm S}$ with mass $M_{\rm S}$, induced by Higgs portal interactions. The same interactions are also responsible for $N_{\rm DM}$ decays. We discuss in detail the constraints coming from DM abundance and stability conditions, showing that in the hierarchical case ($M_{\rm DM} \gg M_{\rm S}$) there is an allowed window on $M_{\rm DM}$, which necessar…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsParticle physicsCold dark matter010308 nuclear & particles physicsPhysics beyond the Standard ModelAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesAstronomy and Astrophysics7. Clean energy01 natural sciencesHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Baryon asymmetryNeutrino detector13. Climate actionLeptogenesis0103 physical sciencesInvariant massHigh Energy Physics::ExperimentNeutrino010306 general physicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Standard and non-standard neutrino properties

2002

I review the interpretation of solar and atmospheric neutrino data in terms neutrino oscillations and describe some ways to account for the required neutrino masses and mixing angles from first principles, both within top-down and bottom-up approaches. I also discuss non-oscillation phenomena such as nu-less double beta which may probe the absolute scale of neutrino mass, and also reveal its Majorana nature. I note that leptonic CP violation induced by ``Majorana'' phases drop from oscillations but play a role in the leptogenesis scenario for the baryon asymmetry of the Universe. Direct tests of leptonic CP violation in oscillation experiments, such as neutrino factories, will be a tough ch…

MarketingPhysicsEconomics and EconometricsParticle physicsPhysics::Instrumentation and DetectorsGeneral Chemical EngineeringAstrophysics (astro-ph)High Energy Physics::PhenomenologyFOS: Physical sciencesFísicaSupersymmetrySolar neutrino problemAstrophysicsHigh Energy Physics - PhenomenologyMAJORANAHigh Energy Physics - Phenomenology (hep-ph)Baryon asymmetryLeptogenesisCP violationHigh Energy Physics::ExperimentGeneral Materials ScienceNeutrinoNeutrino oscillationNuclear Physics B - Proceedings Supplements
researchProduct

Falsifying high-scale baryogenesis with neutrinoless double beta decay and lepton flavor violation

2015

5 pages.- 2 figures

Nuclear and High Energy PhysicsParticle physicsFOS: Physical sciences01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Baryon asymmetryDouble beta decay0103 physical sciences010306 general physicsPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyNon-conservationFísicaLepton numberSphaleron3. Good healthBaryogenesisHigh Energy Physics - PhenomenologyLeptogenesisLeptogenesisCP violationHigh Energy Physics::ExperimentNeutrino
researchProduct

On the validity of perturbative studies of the electroweak phase transition in the Two Higgs Doublet model

2019

Abstract Making use of a dimensionally-reduced effective theory at high temperature, we perform a nonperturbative study of the electroweak phase transition in the Two Higgs Doublet model. We focus on two phenomenologically allowed points in the parameter space, carrying out dynamical lattice simulations to determine the equilibrium properties of the transition. We discuss the shortcomings of conventional perturbative approaches based on the resummed effective potential — regarding the insufficient handling of infrared resummation but also the need to account for corrections beyond 1-loop order in the presence of large scalar couplings — and demonstrate that greater accuracy can be achieved …

Nuclear and High Energy PhysicsParticle physicsPhase transition530 PhysicsSTANDARD MODELFOS: Physical sciencesSECTORParameter space114 Physical sciences3D PHYSICS01 natural scienceslattice quantum field theoryCOSMOLOGY OF THEORIES BEYOND THE SMTwo-Higgs-doublet modelHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)Lattice (order)BARYON ASYMMETRY0103 physical sciencesEffective field theoryeffective field theorieslcsh:Nuclear and particle physics. Atomic energy. RadioactivityResummation010306 general physicscosmology of theories beyond the SMLATTICE QUANTUM FIELD THEORYPhysicsPP COLLISIONS010308 nuclear & particles physicsHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyElectroweak interactionBOSONTHERMAL FIELD THEORYBARYOGENESISthermal field theoryLATTICEHigh Energy Physics - PhenomenologyCP-VIOLATIONTEMPERATURE DIMENSIONAL REDUCTIONlcsh:QC770-798EFFECTIVE FIELD THEORIES
researchProduct

Flavored CP asymmetries for type II seesaw leptogenesis

2013

A novel contribution to the leptonic CP asymmetries in type II seesaw leptogenesis scenarios is obtained for the cases in which flavor effects are relevant for the dynamics of leptogenesis. In the so-called flavored leptogenesis regime, the interference between the tree-level amplitude of the scalar triplet decaying into two leptons and the one-loop wave function correction with leptons in the loop, leads to a new nonvanishing CP asymmetry contribution. The latter conserves total lepton number but violates lepton flavor. Cases in which this novel contribution may be dominant in the generation of the baryon asymmetry are briefly discussed.

Nuclear and High Energy PhysicsParticle physicsmedia_common.quotation_subjectFlavourScalar (mathematics)FOS: Physical sciences01 natural sciencesAsymmetryHigh Energy Physics - Phenomenology (hep-ph)Baryon asymmetrySeesaw molecular geometryModels0103 physical sciences010306 general physicsmedia_commonPhysicsViolation010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyBaryogenesisFísicaAstronomy and AstrophysicsNeutrino MassesLepton numberAtomic and Molecular Physics and OpticsTripletMixingsNeutrino physicsHigh Energy Physics - PhenomenologyGaugeLeptogenesisLeptogenesisSeesaw mechanismHigh Energy Physics::ExperimentLepton
researchProduct